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Abstract

Background. Resting state functional magnetic resonance imaging studies have identified
functional connectivity patterns associated with acute undernutrition in anorexia nervosa
(AN), but few have investigated recovered patients. Thus, a trait connectivity profile charac-
teristic of the disorder remains elusive. Using state-of-the-art graph–theoretic methods in
acute AN, the authors previously found abnormal global brain network architecture, possibly
driven by local network alterations. To disentangle trait from starvation effects, the present
study examines network organization in recovered patients.
Methods. Graph–theoretic metrics were used to assess resting-state network properties in a
large sample of female patients recovered from AN (recAN, n = 55) compared with pairwise
age-matched healthy controls (HC, n = 55).
Results. Indicative of an altered global network structure, recAN showed increased assortativ-
ity and reduced global clustering as well as small-worldness compared with HC, while no
group differences at an intermediate or local network level were evident. However, using sup-
port-vector classifier on local metrics, recAN and HC could be separated with an accuracy of
70.4%.
Conclusions. This pattern of results suggests that long-term recovered patients have an aber-
rant global brain network configuration, similar to acutely underweight patients. While the
finding of increased assortativity may represent a trait marker of AN, the remaining findings
could be seen as a scar following prolonged undernutrition.

Introduction

Anorexia nervosa (AN) is an eating disorder characterized by an intense fear of weight gain
despite severe emaciation caused by self-starvation. Affected individuals typically deny the
severity of the disorder, which often leads to protracted course and high mortality
(Steinhausen, 2002). Although the underlying mechanisms are unknown, biological underpin-
nings including genetic heritability are widely recognized (Kaye et al., 2013). Previous studies
investigating cortical gray matter reported sizeable and relatively global atrophic changes dur-
ing acute illness (King et al., 2018). However, along with a number of endocrine changes
(Merle et al., 2011; Schorr and Miller, 2017), this (pseudo)atrophy has been found to be largely
reversible after successful nutritional therapy (King et al., 2015; Bernardoni et al., 2016).

Studies using task-based functional magnetic resonance imaging (fMRI) in AN have
employed a broad range of psychological paradigms, but most have focused on eating disorder-
related stimuli (e.g. food and body images). Results suggest alterations in brain regions related
to reward processing (Fladung et al., 2010; Cowdrey et al., 2011; Holsen et al., 2012; Decker
et al., 2015; Wierenga et al., 2015) and cognitive control (Foerde et al., 2015). However, findings
are inconsistent with regard to the direction and precise localization of functional anomalies
due to varying-task designs, performance levels, and statistical modeling.

A valuable approach to circumvent some of these inconsistencies may be resting state func-
tional connectivity (RSFC) analysis. Since RSFC data are obtained while the participant is not
engaged in a task, some of the aforementioned challenges are eliminated. Hence, RSFC pro-
vides a reliable means to study clinical populations with a large variance in compliance.
Studies employing this approach have typically used independent component analysis (ICA)
or seed-based connectivity analyses to examine known networks such as the default-mode
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network (Greicius et al., 2003), the cognitive-control network
(Cole and Schneider, 2007) or the salience network (Seeley
et al., 2007).

Previous work has demonstrated widespread cortical (Cowdrey
et al., 2014), limbic (Favaro et al., 2014) as well as cortico-limbic
(Biezonski et al., 2016) dysconnectivities in acute AN. Studies
employing ICA found hyper- and hypo-connectivity in the
fronto-parietal ‘control’ network (Gaudio et al., 2016), default-
mode (Cowdrey et al., 2011; Boehm et al., 2014), and the somato-
sensory and visual networks (Favaro et al., 2012). Recent studies
using a seed-based approach identified alterations in thalamo-
prefrontal (Biezonski et al., 2016) and ventral fronto-parietal con-
nectivity (Collantoni et al., 2016). However, despite an increase of
RSFC studies in AN (Gaudio et al., 2016), the number of studies is
still small in comparison with other psychiatric disorders.
Furthermore, most studies have focused on acutely underweight
patients and thus may have merely measured unspecific effects
of starvation (Gaudio et al., 2016).

Going beyond simple focus on synchronous activity of specific
brain regions or components of interest, graph–theoretical techni-
ques model the brain’s architecture as a complex network
(Bullmore and Sporns, 2009; Fornito et al., 2017). Graph theory
describes the brain as a set of nodes (representing brain areas or vox-
els across the whole brain) connected by edges (interregional func-
tional connections) (Bullmore and Bassett, 2011; Fornito et al.,
2017). In contrast to conventionalRSFCapproaches, a representation
as a graph provides insight into both regional and whole-brain scales
by means of metrics including efficiency of information transfer,
small-world topology, and modularity (Rubinov and Sporns, 2010).

We previously applied this data-driven approach in a relatively
large sample of acutely ill patients with AN (Ehrlich et al., 2015;
Geisler et al., 2016), focusing on global, intermediate, and local
brain network properties and using well-established graph metrics
as well as Network Based Statistics (NBS, Zalesky et al., 2010). We
found that the network structure in acute AN is characterized by
increases in both, characteristic path length and global assortativ-
ity and by changes in intermediate brain architecture driven by
locally decreased connectivity strength and increased path length
in posterior insula and thalamus. Our findings obtained in under-
weight AN patients within the first days of treatment, are suggest-
ive of wide-scale disturbances in information flow across brain
networks. It is currently unclear, however, whether these aberrant
network properties are a state marker related to undernutrition
(such as endocrine changes) or whether they reflect a predispos-
ition which could serve as a biomarker.

Studying patients recovered from AN (recAN) can help to
resolve this ambiguity (state v. trait marker) since effects would
be unrelated to acute undernutrition. Given prior evidence that
the assessment of global network properties are reliable, these
parameters should be sensitive to uncover either no differences
in brain network topology between recAN and matched healthy
controls (HC) (indicative of a state-related phenomenon) or dif-
ferences that resemble our previous findings in acute AN (sug-
gestive of a trait marker).

Materials and methods

Participants

Two independent groups of female volunteers were investigated:
55 recovered former AN patients and pairwise matched 55 female
HC (15.5–29.5 years old).

To be considered ‘recovered’, recAN subjects had to (i) have
previously met AN criteria [based on Diagnostic and Statistical
Manual of Mental Disorders (DSM)-IV], (ii) maintain a body
mass index (BMI) >10th BMI percentile (if <18 years) or a
BMI > 18.5 kg/m2 (if ⩾18 years) for at least 6 months prior to
the study, (iii) menstruate, and (iv) have not binged, purged, or
engaged in significant restrictive eating patterns. To be included
in the HC group, participants had to be of normal weight and
eumenorrheic. This study was approved by the local
Institutional Review Board, and all participants (or their legal
guardians) gave written informed consent. Case–control age-
matching was carried out resulting in a maximum difference of
0.6 years between the individuals within one pair (online
Supplementary material 1.1).

Exclusion criteria and possible confounding variables, e.g. the
use of psychotropic medications other than selective serotonin
reuptake inhibitor (SSRI) (two recAN) and medical comorbidities,
were obtained using the expert version of the structured interview
for anorexia and bulimia nervosa for DSM-IV (SIAB-EX) and our
own semi-structured research interview. HC participants did not
have any history of psychiatric illness or a lifetime BMI below
the 10th age percentile (if <18 years)/BMI below 18.5 kg/m2

(if ⩾18 years) (online Supplementary material 1.1).

Clinical measures

Eating disorder-specific psychopathology was assessed with the
Eating Disorders Inventory (EDI-2). Depressive symptoms were
explored using the Beck Depression Inventory (BDI-2). General
psychopathology was gaged using the revised Symptom
Checklist 90 (SCL-90-R). See online Supplementary material 1.1
for further details. Additionally, plasma leptin was sampled
(online Supplementary material 1.2).

MRI data acquisition

Images were acquired between 8 and 9 am after an overnight fast
using standard sequences with a 3T MRI scanner (TRIO;
Siemens, Erlangen, Germany) using a 12-channel head coil.

Functional images were acquired at rest with eyes closed using
a gradient-echo T2*-weighted echo planar imaging (EPI)
sequence: tilted 17° toward coronal from the AC–PC line (to
reduce signal dropout in orbitofrontal regions); number of
volumes = 190; number of slices = 40; TR = 2200 ms; TE =
30 ms; flip angle = 75°; 3.4 mm in-plane resolution; slice thick-
ness = 2.4 mm (1 mm gap resulting in a voxel size of 3.4 × 3.4 ×
3.4 mm3); FoV = 220 × 220 mm2; bandwidth = 2004 Hz/pixel,
length = 6:58 min (online Supplementary material 1.3).

MRI data preprocessing

MRI images were processed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/) within the Nipype framework (Gorgolewski et al.,
2011). A sample-specific template was created using structural
images from all participants. The slice time corrected functional
data were realigned and registered to their mean. The realigned
files were coregistered to the participant’s structural brain
image. The EPI volumes were then normalized to MNI space
using the sample-specific template and corresponding flow field.
Using DPARSFA toolbox, temporal filtering (0.01–0.08 Hz) was
applied. Then, regression of 5 CompCorr nuisance components
from white matter and cerebrospinal fluid, and of 24 motion

2 Daniel Geisler et al.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291718004002
Downloaded from https://www.cambridge.org/core. Iowa State University  Library, on 25 Jan 2019 at 19:18:16, subject to the Cambridge Core terms of use, available at

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291718004002
https://www.cambridge.org/core


parameters was performed. Subsequently, scrubbing was applied
to eliminate timepoints with a framewise displacement of
>0.5 mm (Power et al., 2012). The resulting volumes were parcel-
lated into 160 spherical regions of interest (ROIs) as defined by
Dosenbach et al. (2010). Time courses of these ROIs were
extracted and symmetric correlation matrices with pair-wise
Pearson correlation coefficients were created. See online
Supplementary material 1.4 for further details.

Computation of graph metrics

Based on correlation matrices, weighted, undirected graph net-
works with 160 nodes were constructed on individual subject
level. The distributions of all Pearson correlation coefficients
from correlation matrices [which have been shown to drive differ-
ences in higher level graph theoretical measures in other neuro-
psychiatric disorders (van den Heuvel et al., 2017)] were not
different across groups (online Supplementary material Fig. S1).
Graphs were thresholded with 21 sparsity levels (10–30%, online
Supplementary material 1.4). Network metrics were derived using
functions from the open-source python library networkx (https://
networkx.github.io). Global graph metrics describe the whole net-
work in a single measure, while local graph metrics characterize
each node individually.

The five global metrics clustering coefficient (CCglob), charac-
teristic pathlength (CPLglob), small-worldness index (σ), assorta-
tivity (α), and global efficiency (Eglob), as well as eight local
graph metrics degree, strength, local characteristic pathlength
(CPLloc), betweenness centrality (BCI), participation index (PI),
local efficiency (Eloc), local clustering coefficient (CCloc), and nor-
malized local efficiency (LEGE) were computed for each sparsity
level. For a detailed description of local and global graph metrics,
see online Supplementary material 1.5 and 1.6.

Statistical analysis

In all statistical analyses we used age-adjusted BMI standard devi-
ation scores (BMI-SDS; online Supplementary material 1.7). A
Shapiro–Wilk test revealed that all graph metrics were not normally
distributed. Therefore, non-parametric independent two-group
Mann–Whitney U tests were performed for between-group com-
parisons using the R toolbox (online Supplementary material 1.7).

If our previous findings of group differences in global assorta-
tivity and pathlength in acAN (Geisler et al., 2016) constitute trait
characteristics of the disorder, we expected to find a similar pat-
tern of results in recAN. For the remaining global metrics test
results were corrected for multiple comparisons using false dis-
covery rate (FDR, p = 0.05).

For local metrics, we hypothesized group differences (Geisler
et al., 2016) in characteristic pathlength (CPLloc) in the left mid-
insula, left post-insula, bilateral thalamus, and in strength in the
left thalamus, left mid-insula, and left post-insula. For the remain-
ing variables, test statistics were corrected for multiple compari-
sons across all regions and local metrics (FDR, p < 0.05). FDR
correction was not applied when comparing the results of net-
works constructed with different sparsity threshold levels, as
they are deemed to be highly interdependent.

To transform the sparsity threshold dependent values of the
global metrics into threshold-independent values, we calculated
the area-under-the-curve (AUC) of the threshold levels (10–
30%) and the corresponding values of the global and local
metrics.

Correlative relationships of metrics showing significant group
differences with clinical and demographic parameters were
assessed using AUC metrics. We focused on overall eating dis-
order symptoms (EDI-2 total score), depression (BDI-2 total
score), BMI-SDS, plasma leptin level, duration of illness, and
age. To account for possibly confounding effects of age and
BMI-SDS, additional partial correlation analyses were carried
out. Results of the correlation analyses were Bonferroni-corrected
for 18 comparisons.

Network-based statistics

NBS is a validated method for identifying a statistically significant
cluster of connections indicating differences between two groups
on intermediate network scales (Zalesky et al., 2010).

NBS are computed using the following steps: (i) identify all
connections (pairs of nodes) that are different between groups
beyond a particular t-value (called primary threshold), (ii) select
the largest contiguous cluster of these connections, and (iii) valid-
ate the cluster’s significance by permutation testing. In permuta-
tion testing an empirical null distribution of the largest cluster size
is generated by conducting the first two NBS steps on resampled
group membership data 5000 times. The returned subnetwork is
statistically significant at a family wise error (FWE) corrected
value of p < 0.05. Although the network needs to be considered
as a whole, the extent of the returned network can be varied
using a different primary threshold. As described previously, we
used a primary threshold of t = 2.0 (Geisler et al., 2016). This
adjusts the extremity of deviation in a connection between groups
required, before it is considered for inclusion in the NBS result.
NBS returns a single p-value, which represents the likelihood
that the subnetwork is due to a true effect in the data. This
approach measures the entire cluster of returned connections,
but does not identify the contribution of each connection inde-
pendently. The NBS procedure was carried out twice with one-
sided t tests for the contrasts recAN <HC and recAN > HC.

Machine learning approach

To discriminate between recAN and HC, a linear support vector
classifier (SVC) was applied to the AUC-values of the all eight
local metrics (degree, strength, CPLloc, BCI, PI, Eloc, CCloc,
LEGE) of all 160 regions.

Based on a set of training data, an SVC computes a hyper-
plane that separates the data optimally according to a particular
cost function in an attempt to find a decision boundary that gen-
eralizes the classification for unseen participants (Gunn, 1998). In
detail, a classifier is derived by providing examples of the form 〈x,
c〉 to find a hyperplane that best separates the input space, where x
represents the input data (e.g. AUC values of eight local metrics
for the 160 brain regions) and c is the class label (in this case diag-
nostic group, recAN =−1, HC = 1). Computation of the SVC was
carried out using the open-source python library scikit-learn
(Pedregosa et al., 2011). A standard linear SVC kernel, L2 regular-
ization, and a regularization strength parameter C = 1 were
employed.

We used a stratified k-fold cross-validation strategy to estimate
the generalization ability of our classifier, i.e. the classification
accuracy in independent test data. We used k = 10, corresponding
to 11 subjects per fold. In stratified k-fold cross-validation, the
data is randomly split into k folds of equally distributed patient
and control cases. A model is trained using k− 1 of the folds
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and its generalization performance was validated on the remain-
ing fold. This process is repeated k times, each time withholding
a different validation subset. The average classification accuracy
over all k models represents the overall generalizability.

We used permutation tests to non-parametrically evaluate the
null hypothesis that the classifiers might have obtained good clas-
sification accuracies just by chance (Ojala and Garriga, 2010).
This involved repeating the classification procedure 3000 times
with a different random permutation of the training group labels.

Results

Sample characteristics

There were no differences in age, intelligence quotient (IQ), or
handedness score between the groups. RecAN had as expected
lower minimal lifetime BMI, slightly lower current BMI and
plasma leptin levels, as well as residual eating disorder symptom
and depression scores (Table 1).

Topological properties (global metrics)

We first tested differences between recAN and HC in assortativity
(α) and characteristic pathlength (CPLglob). The groups did not
differ in pathlength, but recAN had a higher assortativity for 19
of 21 tested sparsity thresholds with p-values between 0.02 and
0.05 (Fig. 1).

Next, we tested for group differences in the remaining global
graph measures small-worldness index (σ), clustering-coefficient
(CCglob), and global efficiency (Eglob). After correcting for multiple
comparisons, both small-worldness index and clustering-
coefficient were reduced in recAN (Fig. 1). In all tested sparsity
thresholds, group comparisons yielded p-values (FDR corrected)
between 0.008 and 0.044.

Group comparisons using AUC values and FDR over all five
measures confirmed significant differences for assortativity,

small-worldness index, and clustering-coefficient (W = 1131,
pFDR = 0.031; W = 1950, pFDR = 0.031; W = 1992, pFDR < 0.025),
but no differences for the remaining metrics. All group differences
remained significant after excluding the two recAN taking SSRI
(W = 1050, pFDR = 0.029; W = 1814, pFDR = 0.029; W = 1857,
pFDR < 0.029).

Neither assortativity, small-worldness index nor clustering-
coefficient were associated with age, BMI, or plasma leptin in
either group (all |r| < 0.23 and pFDR > 0.64). There were also no
correlations between these metrics and eating disorder (EDI-2
total score) or depressive symptoms (BDI-2 total score; all |r| <
0.35 and pFDR > 0.26). The absence of significant correlations
was confirmed when controlling for age or BMI (all |r| < 0.35
and pFDR > 0.26).

Network-based statistics

No differences in subnetworks were found between recAN and
HC.

Nodal characteristics (local metrics)

For the nodal characteristics tested within our hypothesis-driven
approach [characteristic pathlength (CPLloc) and strength], we
did not find any group differences (online Supplementary mater-
ial Fig. S2). Group comparisons of the remaining local graph
metrics were also not significant after correction for multiple
comparisons (eight metrics). Visual inspection of the uncorrected
findings (online Supplementary material Figs. S3–S13) revealed a
pattern of relatively consistent trends toward group differences
predominantly in fronto-parietal brain regions for the measures
degree, strength, local efficiency (Eloc), and normalized local effi-
ciency (LEGE). Therefore, a SVC was trained on the nodal char-
acteristics to discriminate between recAN and HC as an
exploratory analysis. The SVC reached a classification score of
70.4%, which is significantly above chance with p = 0.0003

Table 1. Basic demographic and clinical variables

HC recAN

Mean S.D. Mean S.D. T

Age (years) 22.4 3.3 22.4 3.3 −0.10

BMI 21.7 2.1 20.7 1.7 2.80 **

BMI SDS −0.2 0.7 −0.5 0.5 2.94 **

Minimal lifetime BMI 20.1 1.9 14.3 1.5 17.10 ***

IQ 109.7 9.3 110.8 10.2 −0.59

Handedness score 0.2 0.4 0.1 0.4 0.24

EDI-2 total score 17.1 3.5 21.5 6.3 −4.52 ***

SCL-90-R GSI 0.3 0.4 0.5 0.4 −2.29 *

BDI- total score 4.6 5.5 8.9 8.5 −3.14 **

Leptin, g/ml 14.3 10.0 9.8 6.0 1.54 **

BMI, body mass index; BMI SDS, age-adjusted BMI standard deviation scores; EDI-2, eating disorder inventory, version 2; BDI-2, Beck depression inventory, version 2; SCL-90-R GSI, revised
symptom checklist 90 global symptom score, S.D., standard deviation.
Handedness score ranges from 0 (right) to 2 (left). For details on the assessment of IQ and handedness see online Supplementary material 1.1 and 1.2. Group differences were tested using
Student’s t tests.
80% of the recAN participants were predominately of the restrictive subtype and 20% were predominately of the binge/purge subtype during acute illness as ascertained with the SIAB-EX
interview.
*p < 0.05, **p < 0.01, ***p < 0.001.
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(Fig. 2a). Classification appeared to be driven by differences in
several local graph metrics in temporo-parietal brain regions
(Table 2 and Fig. 2b).

Discussion

The current study demonstrates changes in the configuration of
large-scale functional brain networks of recovered AN patients
for the first time using graph–theoretical metrics of RSFC. We
found that the global functional network structure of recovered
patients is characterized by an increased assortativity representing
an affinity for nodes of a similar degree to connect directly with
each other – a result that mirrors changes in acutely underweight
AN patients (Geisler et al., 2016). This finding suggests increased
assortativity as a trait and possible biomarker for AN.
Furthermore, recAN were characterized by a reduced CCglob,
reflecting diffuse reduced local connectedness, and a decreased
small-worldness index. The latter findings can be interpreted as
a tendency toward a more ‘random’ network structure.

In contrast to acute AN, we did not find significant changes in
the CPLglob, or in graph metrics at the intermediate (NBS, Ehrlich
et al., 2015) or local level (Geisler et al., 2016). However, beyond
group-level differences, a SVC was able to distinguish recAN from
HC individuals based on local graph metrics with a classification
accuracy of 70.4%, driven by degree and BCI in predominantly
parietal and temporal brain regions.

At the global level, the pattern of functional brain network
connectivity observed previously in acAN (Geisler et al., 2016)
and here in recAN seems to be characterized by high-degree
nodes that preferentially connect to other high-degree nodes
(Newman, 2002). At the same time, this increased assortativity
in AN reflects propensity of low degree nodes to preferentially
connect to other low degree nodes (Fig. 3). Conjointly, this con-
figuration of highly interconnected hub nodes as well as specia-
lized clusters of low-degree nodes is suggestive of a trait
reflecting altered global network topology in the disorder. Such
a configuration has been described as ‘cost-efficient’ (Achard
and Bullmore, 2007). However, after approximating the distance

Fig. 1. Group comparisons of global metrics. Results of group comparison of the global metrics characteristic pathlength (CPLglob), assortativity (α), clustering-
coefficient (CCglob), global efficiency (Eglob) and small-worldness index (σ) for all tested sparsity thresholds between 10 and 30. Comparisons were performed
using Mann–Whitney U tests (**p < 0.01; *p < 0.5; ·p < 0.1). According to our a priori hypothesis, p-values for CPLglob and α were uncorrected, whereas p-values
for CCglob, Eglob, and σ were FDR-corrected for multiple comparisons. HC and recovered AN patients (recAN) are depicted by black circles and white triangles,
respectively. Group comparisons using AUC values and FDR over all five measures confirmed significant differences for assortativity, small-worldness index,
and clustering-coefficient.

Fig. 2. Machine learning approach. (a) Results of the support vector classifier (SVC) using all local graph metrics to determine group membership: histogram of
classification scores based on the permutated (blue bars) and actual (green) samples using SVCs. Classification score represents the accuracy of the classifier and
are estimated as the ratio of correct classified test labels to the total number of test labels. (b) Localization of SVC features: only the regions of features with the
highest positive and lowest negative weights are shown (according to Table 2). Red and blue colors indicate positive and negative weights, respectively.
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(Euclidean distance) between nodes and comparing the mean
lengths of connections between the groups, there were no signifi-
cant differences (W = 1686, p = 0.23) indicating that the network
configurations of recAN participants and HC have comparable
costs. Increased assortativity may also pose a risk since network
efficiency can be reduced greatly by degradation of high-degree
nodes. Hence, networks characterized by high assortativity may
be less robust (van den Heuvel and Sporns, 2011).

Furthermore, compared with the HC, the global brain network
architecture in recAN seems to have a subtle randomization of the
small-world pattern with a reduced connectivity between node
neighbors. This pattern has been previously reported in schizo-
phrenia (Lynall et al., 2010) and obsessive compulsive disorder
(Armstrong et al., 2016). Cabral et al. (2012) modeled the influ-
ence of an aberrant structural connectivity on the functional
connectivity. They discovered that structural dysconnection may
result in a network reorganization characterized by a decrease
in both small-worldness and clustering. Gray matter volume
reductions are pronounced in acute AN, but largely reversible
with weight restoration – suggestive of a state-effect (Wagner
et al., 2006; King et al., 2015; Bernardoni et al., 2016). However,
findings on white matter microstructure are more heterogeneous
(Pfuhl et al., 2016; Vogel et al., 2016; King et al., 2018). Remnants
of structural dysconnectivity in recAN, which may not be

detectable using standard DTI sequences, could potentially also
explain differences in global functional network structure.

Changes in assortativity were also found in acutely under-
weight AN patients (Geisler et al., 2016). An exploratory compari-
son (Fig. 3) of recAN and acute AN patients included in our
previous study (Geisler et al., 2016) indicates that recovering
from AN is accompanied by a moderate decrease in assortativity
– but assortativity is still higher than in HC. An (exploratory)
follow-up analysis attempting to unravel the type of brain regions
which drive the increase in assortativity revealed subtle group dif-
ferences in local assortativity (which did not withstand our rigor-
ous control for multiple testing) in nine predominantly occipital
and parietal brain regions (see online Supplementary material
Table S3). These additional findings suggest a global effect
based on small changes in distributed brain areas. Since none of
the group differences found in the current sample were related
to age, BMI, depressive symptoms, eating disorder symptoms or
leptin levels, also when controlling for age and BMI, it seems pos-
sible that hyper-assortativity represents a trait effect rather than a
state effect of AN. Trait effects are assumed to be relatively inde-
pendent of undernutrition (and other variables closely related to
acute illness) and may function as predisposing factors. If con-
firmed, e.g. in subclinical samples, increased assortativity could
potentially also serve as a biomarker which could help to identify

Table 2. Features of support vector classifier (SVC)

SVC coefficient Mean HC Mean recAN

10 most positive features

Postparietal_L_99__betweenness_centrality 0.0333 0.002 0.0016

Parietal_R_74__PI 0.0294 0.1184 0.1026

Temporal_R_95__PI 0.0291 0.1017 0.0936

Precuneus_R_132__strength 0.028 3.0558 2.5717

vlPFC_R_15__degree 0.0276 5.0699 3.5507

Temporal_R_95__E_loc 0.0274 0.1406 0.1369

IPL_L_88__E_loc 0.0273 0.1531 0.1482

Parietal_R_89__l_cc_real 0.0271 0.0444 0.0397

Temporal_R_60__degree 0.0268 10.391 10.1385

Basalganglia_R_39__betweenness_centrality 0.0266 0.0014 0.001

10 most negative features

Parietal_L_64__degree −0.0236 5.3724 7.0131

Inftemporal_L_72__E_loc −0.0249 0.1508 0.1549

Latcerebellum_L_109__degree −0.0256 6.1397 6.7845

Infcerebellum_R_155__strength −0.0256 2.0152 2.4208

Temporal_R_123__betweenness_centrality −0.0266 0.001 0.0014

Occipital_L_142__degree −0.0291 6.9087 8.115

Infcerebellum_R_155__degree −0.0292 4.7181 5.6317

Occipital_R_135__betweenness_centrality −0.034 0.0007 0.0008

Precentralgyrus_R_51__betweenness_centrality −0.0352 0.0003 0.0006

Latcerebellum_L_109__betweenness_centrality −0.0388 0.0013 0.0019

Only the features with the highest positive and lowest negative weights are listed. For the sake of completeness the group means of the raw feature values are provided as well. In the SVC the
groups recAN and HC were coded by −1 and 1, respectively. The name of the features consists of the ROI identifier (anatomical name, hemisphere, and unique index number) and the name
of the local metric. For more details regarding the ROIs, please refer to online Supplementary material Table S2
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at-risk individuals or tailor early interventions and treatment
intensity.

In contrast, for the reductions in small-worldness index and
CC, which were not (yet) observed in young (and mostly first-
episode) underweight AN patients, an explanation that is centered
on ‘scar’ effects from e.g. a prolonged phase of acute illness (and
chronic undernutrition) seems equally plausible.

Unlike our previous studies in acutely ill patients where we
showed reduced synchronization (Ehrlich et al., 2015) and network
efficiency (Geisler et al., 2016) in a thalamo-insular network, the
current analyses of intermediate and local network characteristics
in recAN showed no group differences after correcting for multiple
comparisons. When considering the results before correction for
multiple comparisons, however, nominally significant group differ-
ences seemed to follow a fronto-parietal pattern. However, a recent
methodological study in AN (Lord et al., 2016) suggested that glo-
bal graph metrics can be interpreted relatively confidently, while
local findings may be more dependent on brain parcellation meth-
ods and need to be considered more carefully.

While potential biomarkers for a disorder are usually statistic-
ally significant at the group level, the discriminative ability of
findings on an individual level are typically not evaluated
(Arbabshirani et al., 2017). Here, we appraised the diagnostic rele-
vance of local graph metrics by predicting group membership
using an SVC. The successful classification was driven by degree
and BCI in parietal and temporal brain regions. The found dis-
crimination accuracies of 70.4% is comparable with average accur-
acy levels in RSFC studies predicting group membership in other
neuropsychiatric disorders (Arbabshirani et al., 2017).

Our findings of altered global network topology extend previous
results of more traditional RSFC studies in AN which focused on
circumscribed networks or a few seed regions. However, a recent
integrated review of RSFC studies in AN demonstrates that altera-
tions of functional connectivity cannot be restricted to a few brain
regions or networks (Gaudio et al., 2016). In detail, previous studies

in acutely ill patients have shown altered RSFC in widely distributed
regions of the brain, such as between the dorsal anterior cingulate
cortex and the precuneus, the inferior frontal gyrus, parts of the
ventral attention network, and within the somato-sensory network.
Moreover, alterations do not seem to be limited to the neocortex,
but also occur between subcortical and cortical regions, namely
between the thalamus and the dlPFC (Biezonski et al., 2016) as
well as between insula and ventral striatum (Frank et al., 2016).
Apart from our previous studies, only two other known reports in
AN using somewhat comparable local metrics exists (Kullmann
et al., 2014; Gaudio et al., 2018). Results of these studies (conducted
in acutely underweight AN) suggested reduced degree centrality (the
sum of weights of significant connections for a voxel) in the inferior
frontal gyrus and reduced connectivity in a subnetwork involved in
somatosensory and interoceptive information processing.

Only a small number of studies have examined RSFC in
weight-recovered AN patients. Results suggest that some alterations
in functional connectivity in the fronto-parietal (Boehm et al.,
2016), the default mode (Cowdrey et al., 2014), and the somato-
sensory network (Favaro et al., 2012) may persist after recovery.
One previous study applied a graph–theoretical analysis approach
to white matter tractography data (Zhang et al., 2016) and found
abnormal modular structural organization in the form of shifted
frontostriatal and fronto-cingulate coupling in weight-restored
patients. Although these findings may be seen as complementary,
future studies including AN patients at different stages of their ill-
ness as well as longitudinal studies are warranted.

Limitations

When considering our work, some important limitations have to
be taken into account. First, as properties of graph networks also
depend on the chosen brain parcellation and preprocessing algo-
rithm (Fornito et al., 2017), the current results are not independent
from the chosen processing pipeline – even though we followed the
current standards in the field. This standard analysis also neglects
to capture dynamic changes in network configurations and only
takes positive edge weights into account. There is increasing evi-
dence suggesting the importance of negative correlations within
brain networks of individuals with psychological symptoms
(Castellanos et al., 2008; Fox et al., 2009; Whitfield-Gabrieli and
Ford, 2012). Second, the cross-sectional nature of the study does
not allow differentiation between a true trait marker or a possible
scar effect of the disorder regarding the observed differences in
brain network architecture in recAN. To clarify whether those
neural substrates are a consequence or a potential precursor of
pathologic eating behavior, future longitudinal studies are needed.
Third, the results of the study are limited to the brain function at
rest and the specific metrics investigated. Further investigations of
trait-level reconfiguration during task performance and using
other metrics such as modularity could provide a deeper under-
standing of the neurobiological processes (Vatansever et al.,
2015). Fourth, although our samples were meticulously age-
matched, effects of age on network configurations cannot be
ruled out entirely. However, the large and homogeneous sample
consisting of relatively young and almost exclusively unmedicated
recAN may be viewed as a strength of our study.

Conclusion

The current study, which is the largest RSFC study in recAN to
date, provides evidence for altered global brain network

Fig. 3. Schematic representation of assortativity in brain network topology of HC and
patients with anorexia nervosa. Nodes are labeled by their degree. If an edge con-
nects nodes of the same degree, it is colored red; otherwise it is colored black. NS

(same degree) and Nd (different degree) denote the numbers of red and black
edges of the whole graph, respectively. Positive assortativity: high-degree nodes pri-
marily connect to other high-degree nodes and low-degree nodes connect to other
low-degree nodes. All three topological architectures presented above showed posi-
tive assortativity. However, assortativity increases from healthy participants to recAN
to acutely ill AN (acAN). We found this pattern of increase in the actual data. An
exploratory analysis on the AUC assortativity values confirmed significantly higher
values in recAN (meanAUC = 3.45, S.D.AUC = 1.39) if compared with the acute patients
(meanAUC = 4.23, S.D.AUC = 1.84; n = 35; W = 1278, p = 0.01) included in our previous
study (Geisler et al., 2016). HC showed the lowest assortativity (meanAUC = 2.90,
S.D.AUC = 1.27) that was significantly different from recAN (W = 1131, pFDR = 0.031, see
results section). See online Supplementary material 1.8 for more details.
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architecture in recovered AN patients, indicating a wide-scale dis-
turbance in information flow across brain networks. Of note, a
configuration in which high degree nodes are preferentially con-
nected with similar high degree nodes and vice versa seems to
characterize patients with acute as well as recovered AN, suggest-
ive of a trait that may predispose to the illness or an early effect of
undernutrition that does not normalize with recovery. Our find-
ings provide new insights into the neurobiology underlying this
disorder by providing support for an ‘altered global network
architecture’ perspective. Furthermore, this study is a large step
toward better predictive ability to classify patients at an individual
level using brain-based biomarkers which potentially could help
diagnosing AN early and may guide the selection and timing of
treatments.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718004002.
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